Project: Customer Analytics- Preparing Data for Modeling
A common problem when creating models to generate business value from data is that the datasets can be so large that it can take days for the model to generate predictions. Ensuring that your dataset is stored as efficiently as possible is crucial for allowing these models to run on a more reasonable timescale without having to reduce the size of the dataset.
You’ve been hired by a major online data science training provider called Training Data Ltd. to clean up one of their largest customer datasets. This dataset will eventually be used to predict whether their students are looking for a new job or not, information that they will then use to direct them to prospective recruiters.
You’ve been given access to customer_train.csv
, which is a subset of their entire customer dataset, so you can create a proof-of-concept of a much more efficient storage solution. The dataset contains anonymized student information, and whether they were looking for a new job or not during training:
Column | Description |
---|---|
student_id |
A unique ID for each student. |
city |
A code for the city the student lives in. |
city_development_index |
A scaled development index for the city. |
gender |
The student’s gender. |
relevant_experience |
An indicator of the student’s work relevant experience. |
enrolled_university |
The type of university course enrolled in (if any). |
education_level |
The student’s education level. |
major_discipline |
The educational discipline of the student. |
experience |
The student’s total work experience (in years). |
company_size |
The number of employees at the student’s current employer. |
last_new_job |
The number of years between the student’s current and previous jobs. |
training_hours |
The number of hours of training completed. |
job_change |
An indicator of whether the student is looking for a new job (1 ) or not (0 ). |
# Start your code here!
import pandas as pd
import numpy as np
=pd.read_csv("customer_train.csv")
ds_jobs ds_jobs.shape
(19158, 14)
4) ds_jobs.head(
|
student_id |
city |
city_development_index |
gender |
relevant_experience |
enrolled_university |
education_level |
major_discipline |
experience |
company_size |
company_type |
last_new_job |
training_hours |
job_change |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 |
8949 |
city_103 |
0.920 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
>20 |
NaN |
NaN |
1 |
36 |
1 |
1 |
29725 |
city_40 |
0.776 |
Male |
No relevant experience |
no_enrollment |
Graduate |
STEM |
15 |
50-99 |
Pvt Ltd |
>4 |
47 |
0 |
2 |
11561 |
city_21 |
0.624 |
NaN |
No relevant experience |
Full time course |
Graduate |
STEM |
5 |
NaN |
NaN |
never |
83 |
0 |
3 |
33241 |
city_115 |
0.789 |
NaN |
No relevant experience |
NaN |
Graduate |
Business Degree |
<1 |
NaN |
Pvt Ltd |
never |
52 |
1 |
sum() ds_jobs.memory_usage().
2145824
ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int64
1 city 19158 non-null object
2 city_development_index 19158 non-null float64
3 gender 14650 non-null object
4 relevant_experience 19158 non-null object
5 enrolled_university 18772 non-null object
6 education_level 18698 non-null object
7 major_discipline 16345 non-null object
8 experience 19093 non-null object
9 company_size 13220 non-null object
10 company_type 13018 non-null object
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int64
13 job_change 19158 non-null int64
dtypes: float64(1), int64(3), object(10)
memory usage: 2.0+ MB
Task 1
Columns containing integers must be stored as 32-bit integers (int32).
= ds_jobs.select_dtypes(include='int64').columns.tolist()
int_columns int_columns
['student_id', 'training_hours', 'job_change']
=ds_jobs[int_columns].astype('int32')
ds_jobs[int_columns] ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null object
2 city_development_index 19158 non-null float64
3 gender 14650 non-null object
4 relevant_experience 19158 non-null object
5 enrolled_university 18772 non-null object
6 education_level 18698 non-null object
7 major_discipline 16345 non-null object
8 experience 19093 non-null object
9 company_size 13220 non-null object
10 company_type 13018 non-null object
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: float64(1), int32(3), object(10)
memory usage: 1.8+ MB
Task 2
Columns containing floats must be stored as 16-bit floats (float16).
= ds_jobs.select_dtypes(include='float64').columns.tolist() float_columns
=ds_jobs[float_columns].astype("float16") ds_jobs[float_columns]
ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null object
2 city_development_index 19158 non-null float16
3 gender 14650 non-null object
4 relevant_experience 19158 non-null object
5 enrolled_university 18772 non-null object
6 education_level 18698 non-null object
7 major_discipline 16345 non-null object
8 experience 19093 non-null object
9 company_size 13220 non-null object
10 company_type 13018 non-null object
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: float16(1), int32(3), object(10)
memory usage: 1.7+ MB
Task 3
Columns containing nominal categorical data must be stored as the category data type.
ds_jobs.columns
Index(['student_id', 'city', 'city_development_index', 'gender',
'relevant_experience', 'enrolled_university', 'education_level',
'major_discipline', 'experience', 'company_size', 'company_type',
'last_new_job', 'training_hours', 'job_change'],
dtype='object')
6) ds_jobs.head(
|
student_id |
city |
city_development_index |
gender |
relevant_experience |
enrolled_university |
education_level |
major_discipline |
experience |
company_size |
company_type |
last_new_job |
training_hours |
job_change |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 |
8949 |
city_103 |
0.919922 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
>20 |
NaN |
NaN |
1 |
36 |
1 |
1 |
29725 |
city_40 |
0.775879 |
Male |
No relevant experience |
no_enrollment |
Graduate |
STEM |
15 |
50-99 |
Pvt Ltd |
>4 |
47 |
0 |
2 |
11561 |
city_21 |
0.624023 |
NaN |
No relevant experience |
Full time course |
Graduate |
STEM |
5 |
NaN |
NaN |
never |
83 |
0 |
3 |
33241 |
city_115 |
0.789062 |
NaN |
No relevant experience |
NaN |
Graduate |
Business Degree |
<1 |
NaN |
Pvt Ltd |
never |
52 |
1 |
4 |
666 |
city_162 |
0.767090 |
Male |
Has relevant experience |
no_enrollment |
Masters |
STEM |
>20 |
50-99 |
Funded Startup |
4 |
8 |
0 |
5 |
21651 |
city_176 |
0.764160 |
NaN |
Has relevant experience |
Part time course |
Graduate |
STEM |
11 |
NaN |
NaN |
1 |
24 |
1 |
=['city', 'gender','enrolled_university', 'major_discipline', 'company_type'] nominal_cat_columns
=ds_jobs[nominal_cat_columns].astype("category")
ds_jobs[nominal_cat_columns] ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null category
2 city_development_index 19158 non-null float16
3 gender 14650 non-null category
4 relevant_experience 19158 non-null object
5 enrolled_university 18772 non-null category
6 education_level 18698 non-null object
7 major_discipline 16345 non-null category
8 experience 19093 non-null object
9 company_size 13220 non-null object
10 company_type 13018 non-null category
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: category(5), float16(1), int32(3), object(5)
memory usage: 1.1+ MB
Task 4
Columns containing ordinal categorical data must be stored as ordered categories, and not mapped to numerical values, with an order that reflects the natural order of the column.
"education_level"].unique() ds_jobs[
array(['Graduate', 'Masters', 'High School', nan, 'Phd', 'Primary School'],
dtype=object)
=['Primary School','High School','Graduate', 'Masters', 'Phd', 'nan' ] education_order
"education_level"]=pd.Categorical(ds_jobs["education_level"],ordered=True,categories=education_order) ds_jobs[
ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null category
2 city_development_index 19158 non-null float16
3 gender 14650 non-null category
4 relevant_experience 19158 non-null object
5 enrolled_university 18772 non-null category
6 education_level 18698 non-null category
7 major_discipline 16345 non-null category
8 experience 19093 non-null object
9 company_size 13220 non-null object
10 company_type 13018 non-null category
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: category(6), float16(1), int32(3), object(4)
memory usage: 978.9+ KB
"relevant_experience"].unique()
ds_jobs[=['No relevant experience','Has relevant experience']
order"relevant_experience"]=pd.Categorical(ds_jobs["relevant_experience"],ordered=True,categories=order) ds_jobs[
"enrolled_university"].unique()
ds_jobs[=['no_enrollment','Part time course','Full time course','NaN']
order"enrolled_university"]=pd.Categorical(ds_jobs["enrolled_university"],ordered=True,categories=order) ds_jobs[
=['<1','1','2', '3', '4','5','6', '7', '8','9','10','11','12', '13', '14','15','16', '17', '18','19', '20','>20','nan' ] order
"experience"].unique() ds_jobs[
array(['>20', '15', '5', '<1', '11', '13', '7', '17', '2', '16', '1', '4',
'10', '14', '18', '19', '12', '3', '6', '9', '8', '20', nan],
dtype=object)
=['<1','1','2', '3', '4','5','6', '7', '8','9','10','11','12', '13', '14','15','16', '17', '18','19', '20','>20','nan' ] order
"experience"]=pd.Categorical(ds_jobs["experience"],ordered=True,categories=order) ds_jobs[
ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null category
2 city_development_index 19158 non-null float16
3 gender 14650 non-null category
4 relevant_experience 19158 non-null category
5 enrolled_university 18772 non-null category
6 education_level 18698 non-null category
7 major_discipline 16345 non-null category
8 experience 19093 non-null category
9 company_size 13220 non-null object
10 company_type 13018 non-null category
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: category(8), float16(1), int32(3), object(2)
memory usage: 717.9+ KB
"company_size"].unique() ds_jobs[
array([nan, '50-99', '<10', '10000+', '5000-9999', '1000-4999', '10-49',
'100-499', '500-999'], dtype=object)
=['<10','10-49','50-99', '100-499', '500-999','1000-4999','5000-9999','10000+','nan'] order
"company_size"]=pd.Categorical(ds_jobs["company_size"],ordered=True,categories=order) ds_jobs[
ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null category
2 city_development_index 19158 non-null float16
3 gender 14650 non-null category
4 relevant_experience 19158 non-null category
5 enrolled_university 18772 non-null category
6 education_level 18698 non-null category
7 major_discipline 16345 non-null category
8 experience 19093 non-null category
9 company_size 13220 non-null category
10 company_type 13018 non-null category
11 last_new_job 18735 non-null object
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: category(9), float16(1), int32(3), object(1)
memory usage: 587.3+ KB
"last_new_job"].unique() ds_jobs[
array(['1', '>4', 'never', '4', '3', '2', nan], dtype=object)
=['never','1','2', '3', '4','>4','nan'] order
"last_new_job"]=pd.Categorical(ds_jobs["last_new_job"],ordered=True,categories=order)
ds_jobs[ ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 19158 non-null int32
1 city 19158 non-null category
2 city_development_index 19158 non-null float16
3 gender 14650 non-null category
4 relevant_experience 19158 non-null category
5 enrolled_university 18772 non-null category
6 education_level 18698 non-null category
7 major_discipline 16345 non-null category
8 experience 19093 non-null category
9 company_size 13220 non-null category
10 company_type 13018 non-null category
11 last_new_job 18735 non-null category
12 training_hours 19158 non-null int32
13 job_change 19158 non-null int32
dtypes: category(10), float16(1), int32(3)
memory usage: 456.7 KB
'company_size'].cat.categories[5] ds_jobs[
'1000-4999'
=ds_jobs['experience']>=ds_jobs['experience'].cat.categories[10]
x= ds_jobs['company_size']>=ds_jobs['company_size'].cat.categories[5] y
= ds_jobs[x & y] ds_jobs_clean
10) ds_jobs_clean.head(
|
student_id |
city |
city_development_index |
gender |
relevant_experience |
enrolled_university |
education_level |
major_discipline |
experience |
company_size |
company_type |
last_new_job |
training_hours |
job_change |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 |
699 |
city_103 |
0.919922 |
NaN |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
17 |
10000+ |
Pvt Ltd |
>4 |
123 |
0 |
12 |
25619 |
city_61 |
0.913086 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
>20 |
1000-4999 |
Pvt Ltd |
3 |
23 |
0 |
31 |
22293 |
city_103 |
0.919922 |
Male |
Has relevant experience |
Part time course |
Graduate |
STEM |
19 |
5000-9999 |
Pvt Ltd |
>4 |
141 |
0 |
34 |
26494 |
city_16 |
0.910156 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
Business Degree |
12 |
5000-9999 |
Pvt Ltd |
3 |
145 |
0 |
40 |
2547 |
city_114 |
0.925781 |
Female |
Has relevant experience |
Full time course |
Masters |
STEM |
16 |
1000-4999 |
Public Sector |
2 |
14 |
0 |
47 |
25987 |
city_103 |
0.919922 |
Other |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
19 |
10000+ |
Public Sector |
4 |
52 |
1 |
104 |
1180 |
city_16 |
0.910156 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
12 |
5000-9999 |
Pvt Ltd |
1 |
52 |
0 |
108 |
25349 |
city_16 |
0.910156 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
>20 |
1000-4999 |
Pvt Ltd |
>4 |
28 |
0 |
115 |
20576 |
city_97 |
0.924805 |
Male |
Has relevant experience |
no_enrollment |
Graduate |
STEM |
>20 |
1000-4999 |
Pvt Ltd |
>4 |
19 |
0 |
130 |
3921 |
city_36 |
0.893066 |
NaN |
No relevant experience |
no_enrollment |
Phd |
STEM |
>20 |
1000-4999 |
Public Sector |
>4 |
4 |
0 |
ds_jobs_clean.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2201 entries, 9 to 19143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 student_id 2201 non-null int32
1 city 2201 non-null category
2 city_development_index 2201 non-null float16
3 gender 1821 non-null category
4 relevant_experience 2201 non-null category
5 enrolled_university 2185 non-null category
6 education_level 2184 non-null category
7 major_discipline 2097 non-null category
8 experience 2201 non-null category
9 company_size 2201 non-null category
10 company_type 2144 non-null category
11 last_new_job 2184 non-null category
12 training_hours 2201 non-null int32
13 job_change 2201 non-null int32
dtypes: category(10), float16(1), int32(3)
memory usage: 76.3 KB
DataCamp Codes
import pandas as pd
# Load the dataset
= pd.read_csv("customer_train.csv")
ds_jobs
# Copy the DataFrame for cleaning
= ds_jobs.copy()
ds_jobs_clean
# Create a dictionary of columns containing ordered categorical data
= {
ordered_cats 'relevant_experience': ['No relevant experience', 'Has relevant experience'],
'enrolled_university': ['no_enrollment', 'Part time course', 'Full time course'],
'education_level': ['Primary School', 'High School', 'Graduate', 'Masters', 'Phd'],
'experience': ['<1'] + list(map(str, range(1, 21))) + ['>20'],
'company_size': ['<10', '10-49', '50-99', '100-499', '500-999', '1000-4999', '5000-9999', '10000+'],
'last_new_job': ['never', '1', '2', '3', '4', '>4']
}
# Loop through DataFrame columns to efficiently change data types
for col in ds_jobs_clean:
# Convert integer columns to int32
if ds_jobs_clean[col].dtype == 'int':
= ds_jobs_clean[col].astype('int32')
ds_jobs_clean[col]
# Convert float columns to float16
elif ds_jobs_clean[col].dtype == 'float':
= ds_jobs_clean[col].astype('float16')
ds_jobs_clean[col]
# Convert columns containing ordered categorical data to ordered categories using dict
elif col in ordered_cats.keys():
= pd.CategoricalDtype(ordered_cats[col], ordered=True)
category = ds_jobs_clean[col].astype(category)
ds_jobs_clean[col]
# Convert remaining columns to standard categories
else:
= ds_jobs_clean[col].astype('category')
ds_jobs_clean[col]
# Filter students with 10 or more years experience at companies with at least 1000 employees
= ds_jobs_clean[(ds_jobs_clean['experience'] >= '10') & (ds_jobs_clean['company_size'] >= '1000-4999')] ds_jobs_clean